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I. INTRODUCTION

There remain significant difficulties in the measurement of elastoplastic parameters for use in analysis

of finite straining of relatively ductile materials. Ideally, one would prefer use of tests in which a single

stress component (at a time) could be varied as a function of an associated strain component during which

measurements of applied loads and corresponding deformations could be made on a test section of

reasonable size in which a stale of homogeneous stress exists. However, conventional uniaxial tests have

shortcomings which limit their usefulness. Tension tests are limited to relatively modest strains by the

inception of necking. Compression testing involves overcoming friction problems on end surfaces in order

to obtain uniform axial stresses on these surfaces and avoid "barreling" (or interrupted testing of

re-machined specimens). The torsion test is attractive in that shearing strains of 600% and greater have

been reported for thin-walled tube specimens but also presents experimental and interpretational problems

which will be discussed.

It may be recalled that Poynting (1909) studied finite torsion of wires while Swift (1947) performed

tests on solid and hollow rods. Both reported an elongation of their specimens under finite twisting.

Subsequently, Lindholm et al. (1980) (Johnson et al. 1983) employed a torsion specimen of the form

shown in Figure 1, in particular for determination of material parameters for use with the

Johnson-Cook (1983) constitutive model. White (1992) recently published a report in which the

limitations on use of elementary analysis for interpretation of torsion test results were assessed by

comparison with finite element calculations. It was found necessary to apply a correction factor to the

rotation of the grips to allow for the deformation which occurs in the shoulder section of the

Lindholm-type specimen. Unfortunately, this factor is a function of the specimen geometry and the flow

stress function. Also, finite element calculations have revealed a tendency for tubes to decrease in

diameter as the twist increases. When this is inhibited by the massive shoulder regions of the Lindholm

specimen, longitudinal bending develops. Another concern with torsion testing of thin-walled tubes is the

possibility of torsional buckling. To mitigate these problems, the gauge length of the Lindholm specimen

is made quite short, making accurate optical measurements of strains almost impossible. Perhaps a more

serious drawback is that there is essentially no portion of the gauge section which is in a homogeneous

stress state.

In an effort to circumvent at least some of the problems cited previously, the author has studied

designs of torsion specimens in which a longer gauge section can be employed but which would have to
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Figure 1. Geometry of the thin-walled torsion specimen.

be thick-walled or even solid to avoid buckling. There is a severe penalty associated with this approach.

Whereas for the thin-walled tube, a mean shealing stress can be related to the applied torque by

equilibrium considerations, it now becomes necessary to calculate the elastoplastc variation of stresses

with the radius and this requires selection of a specific plasticity model. It was decided to perform the

necessary calculations using rate-independent isothermal elastoplasticity, the von Misep yield function, and

the associated flow rule.

The widely employed Lagrangian hydrocode DYNA3D (Hallquist 1983) provides these features in

several of its material models. In particular, Model 10 accepts input of discrete data pairs representing

points on an effective stress vs. effective plastic strain curve and interpolates for 'ntermediate values as

needed. This model originally only provided for isotropic work hardening, but the author has modified

it to feature mixed isotropic/kinematic hardening as suggested by Hodge (1957). Also, the DYNA3D code

has been altered to offer a choice between use of the Jaumann (1905) stress rate or the

Green-Naghdi (1965) (Green and McInnis 1967) rate (polar decomposition of the deformation gradient).

In the following, this code is employed to treat several boundary value problems pertaining to the torsion

of hollow tubes and solid rods.

2. HOLLOW CYLINDERS

Consider the problem of a moderately thick ring composed of "brick" elements: 5 elements in the

radial direction, 72 in the circumferential direction, and I in the axial direction (see Figure 2). The

2



Figure 2. Ring-torsion problem gridding.

undeformed inner and outer radii of the ring are 0.315 in and 0.465 in, respectively, and the axial

dimension is 0.030 in. The radial dimensions of each element are initially equal. The material data to

be employed in Model 10 were derived from the quasi-static tests on annealed OFHC copper reported by

Weerasooriya and Swanson (1991), 16 points on the effective stress vs. effective plastic strain curve being

used as input. The density was taken to be 0.000837 lb s/in 4. The nodes are constrained to not move in

the axial direction but are free to move radially. The two z = constant faces rotate in contrary directions

at 1 rad/s and are given appropriate initial velocities to avoid a starting transient. Clearly, the solution of

this idealized problem alho applies to an infinitely long cylinder made of many such rings all subjected

to the same loading. It also applies to the central portion of a finite fixed-ended cylinder sufficiently

removed from the ends where torques are applied that a homogeneous state of stress exists. Except when

it is desired to analyze the possibility of torsional buckling of the cylinder, it is possible to focus on the

stresses and deformation of a single "wedge" of five radial elements, since all such wedges have the same

deformation history (see Figure 3). Since the DYNA3D code does not have input options suitable for

modeling the wedge problem, a special subroutine, T5RFIX, was introduced to apply the appropriate nodal

constraints to duplicate the results of the ring calculations. Consequently, the rather voluminous results

for the ring problem will not be shown but were used to check the validity of the wedge constraints.
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Figure 3. Wedge of five radial elements.

3. WEDGE PROBLEMS

A matrix of fixed-ended wedge problems was then studied for the possible combinations of isotropic

and kinematic hardening and the Jaumann and Green-Naghdi stress rates, all run to a final torsional shear

strain of EzO ,6 2.0 (tensor component). In the course of a convergence study, it was found that the major

stress cy.0 is insensitive to the size of the wedge angle, but that computed values of the circumferential

stresses Ooo in the five elements were inconsistent with the requirement that the hoop force on any radial

section should be zero in a statics problem. This cast doubt on the validity of all predicted normal stresses

induced by the torsional loading. The difficulty appears to be associated with the brick element employed

by DYNA3D. This element uses a single integration point located at its center, when the element

experiences large shearing and warping, the stresses computed at the integration point are inappropriate

for evaluating nodal forces since the actual stresses in the neighborhood of the nodes would vary

significantly from those at the center of the element. This difficulty can be somewhat alleviated by

reducing the thickness of the elements in the z-direction (which reduces the amount of circumferential

stretch required to reach the desired shearing strain). Some effort was made to optimize the element

thickness to minimize the hoop force and the results which follow are based on this concept.

Results from DYNA3D calculations for the fixed-ended wedge using the Jaumann stress rate for both

isotropic and kinematic hardening are shown in Figure 4 for the middle element of the wedge. The

isotropic hardening curve for the shearing stress is in good agreement with experimental data

(Weerasooriya and Swanson 1991) and the induced normal stresses, while not zero, are too small to be

visible with the scale employed. For the pure kinematic hardening case, the shear stress exhibits the

widely noted sinusoidal behavior associated with the Jaumann rate, as do the induced normal stresses.

4
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Figure 4. Stresses computed using the Jaumann stress rate.

The magnitudes of the latter stresses are unrealistically large and these stresses would significantly affect

the effective stress function if actually present. The experimental curve for the induced axial stress is also

shown in this figure. Calculations for a free-ended wedge were also made using the Jaumann stress rate

for the isotropic case; the results were indistinguishable from the isotropic curves shown in Figure 4. Of

course, there was an axial extension of the wedge and the magnitudes of the axial stresses were further

reduced.

Calculations similar to those described previously were also performed using the Green-Naghdi stress

rate and the results for a fixed-ended wedge are shown in Figure 5. For the isotropic case, the curves

shown in this figure are essentially the same as those obtained using the Jaumann rate. In the kinematic

hardening case, the early oscillatory behavior was avoided but the magnitudes of the induced normal

stresses are still large.

5



Torsional Shear Stress

30000 - Isotropic Hardening

20000/ Kinematic Hardening -- <

10000 1-

Circumferential Stress

-10000 h-
-1000, 

Axial Stress

-200001
0 0.5 1.0 1.5 2.0

Figure 5. Stresses computed using the Green-Naghdi stress rate.

4. SOLID SPECIMENS

In anticipation that torsional buckling of hollow, cylindrical specimens might preclude successful

material characterization tests at large shear strains, a study of the feasibility of using DYNA3D

calculations for test data interpretations (up to incipient buckling) was conducted. Again, it is not

necessary to model the entire cross section, but only a "pie-shaped" wedge with appropriate constraints.

To accomplish this, the DYNA3D code was modified to include subroutines TWED and TWED2, which

apply to the geometry indicated in Figure 6.

A series of calculations were performed in which the nodes on the outer surface in the "grip" region

were inhibited from moving in the axial direction and constrained to rotate about the Z-axis at specified

angular velocities. The results of these calculations are too complex to cover in this report. However,

it is worth noting certain new phenomena which arise in these calculations.
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Figure 6. Geometry for the solid wedge calculations.

One of these is what may be termed "isothermal shear banding," which entails a spontaneous, rapid

increase in plastic strain in an element or in all the elements at some axial location. This phenomenon

is unrelated to thermal softening of materials since the mathematical model has no provision for thermal

effects. Although this behavior is observed to a very limited extent during calculations using isotropic

hardening, it is a serious destabilizing effect when kinematic hardening is employed. This banding is

triggered in the most critically loaded element when the sinusoidally varying shear stress decreases from

its first peak. Figure 7 shows end views of the twisting wedge before and after the appearance of the first

band. Unlike adiabatic shear bands which progress to extreme localization, these isothermal bands tend

to broaden as the banding spreads to adjacent elements.

Shear Band

initial Position

t= 0.013 -t0.015

Figure 7. End views of wedage before and after shear banding.
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Another phenomenon occurred during a mixed isotropic/kinematic calculation using the Green-Naghdi

stress rate (made to assess the Bauschinger effect) in which the "grip" end was programmed to twist

through 2800 and then twist back to 1200. During the latter part of the reversed loading, the wedge was

observed to buckle (computationally, but this may also occur in a physical experiment).

5. CONCLUDING REMARKS

It is the uncertainties regarding modeling plastic flow, work hardening, evolution of anisotropy, and

objective stress rates which impede successful finite element modeling of experimental specimen

configurations and motivate experimentalists to adopt simple shapes such as !he thin-walled tube for which

stress can be related to strain through equilibrium and geometric considerations.

The feasibility of modeling the torsion of hollow cylinder and solid rod specimens has been

demonstrated in this report, but the results are conditioned by material modeling decisions. In view of

this, the author does not feel that the tedious and expensive calculations required for a converged solution

for the solid rod can be justified. Further study of modeling the hollow tube using various material

representations and alternate finite elements may be worthwhile.

Where it is desired to use the thin-walled tube specimen, the configuration shown in Figure 8 may be

considered. This configuration, which is very similar to that employed by Professor Swift (1947), consists

of a straight, cylindrical tube with snugly fitted plugs of a high modulus material inserted in each end.

The grips of a torsion tester would be applied in the region of the plugs. The gauge section of the tube

must be relatively short to inhibit torsional buckling. Swift attempted to resist buckling by introducing

a small clearance solid rod into the gauge section as part of one of the end plugs but had problems with

binding between the rod and specimen. It would appear preferable to introduce a "free floating" solid rod

and use today's super lubricants. Another method for delaying the onset of buckling would be to apply

a uniform axial tension to the test specimen.

It should be remarked that elastoplastic parameters obtained by finite shearing or compression tests

may no longer pertain to an isotropic material. It would be extremely valuable to be able to map the

current yield surface to assess induced anisotropy, preferably in the same experimental apparatus.
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Figure 8. Suggested torsion test configuration.
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